top of page
Search

Self‐Regulating Colloidal Co‐Assemblies That Accelerate Their Destruction via Chemo‐Structural FB

  • Writer: Andreas Walther
    Andreas Walther
  • Jul 8, 2022
  • 1 min read

Sharma, C., Walther, A.

Biological self-assemblies self- and cross-regulate each other via chemical reaction networks (CRNs) and feedback. Although artificial transient self-assemblies have been realized via activation/deactivation CRNs, the transient structures themselves do mostly not engage in the CRN. We introduce a rational design approach for chemo-structural feedback, and present a transient colloidal co-assembly system, where the formed co-assemblies accelerate their destruction autonomously. We achieve this by immobilizing enzymes of a deactivating acid-producing enzymatic cascade on pH-switchable microgels that can form co-assemblies at high pH. Since the enzyme partners are immobilized on individual microgels, the co-assembled state brings them close enough for enhanced acid generation. The amplified deactivator production (acid) leads to an almost two-fold reduction in the lifetime of the transiently formed pH-state. Our study thus introduces versatile mechanisms for chemo-structural feedback.






 
 
 

Recent Posts

See All
A subwoofer separates chiral fibers

Read the full article here: Chem, 2023, DOI: 10.1016/j.chempr.2023.02.006 Aritra Sarkar and Andreas Walther The spatial organization of...

 
 
 

Comments


Archive
Search By Tags
Follow Us
  • Facebook Basic Square
  • X
  • LinkedIn Social Icon

© Andreas Walther - all rights reserved

bottom of page